

INDEX

WARNINGS 4
0. UVA OVERVIEW 6

1. FABRICATION 8
1.1. 3D PRINTING 8
1.2. SMD REFLOW SOLDERING 10
1.2.1. WITH A REFLOW OVEN 11
1.2.2. PCB'S DYAGRAMS 12
1.2.3. LIST OF COMPONENTS 13
2. ASSEMBLY 14
2.1. CIRCUIT INTERCONECTION 14
2.2. BATTERY PACK 26
2.3. FINAL ASSEMBLY UVA 34
3. LICENCES
4. LICENCES 38 38
3.1. CREATIVE COMMON
3.1. CREATIVE COMMON 38 38

FOR FURTHER INFORMATION YOU CAN ENTER TO THE NEXT LINK
https://hackaday.io/project/173560-uva

WARNINGS

Sharp Elements

Hot Surface

Poisoning

Flammable Materials

Arc Flash

Corrosive Substance

Battery charging

Optical Radiation

Electricity

O. UVA OVERVIEW

UVA-MB-2
 OLED I2C (front)

(s) 반

2X M3-15mm BOLTS WITH NUT

UVA-MB-1

HEATSINK ATS-54250W$m \leftrightarrow m_{\infty} a_{\infty}$

 8 X CONTACTS Keystone 1017-1

3X Keeppower 186503500 mAh

UVA-MB-3

1. FABRICATION

1.1. 3D PRINTING

You will need for this task the follow materials and tools:

3D PRINTER
PLA FILAMENT

ONE SHEET
SPATULA

P1. LEVEL YOUR PRINTING BED

This is the most essential part of the process to achieve a good quality print. So, if it is necessary, repeat the process several times until you find a good result.

P2. PREHEAT THE PRINTER

We recommend preheating the printer before the printing process between $210{ }^{\circ} \mathrm{C}$ and $213^{\circ} \mathrm{C}$ for PLA. If you have a heated bed (that is highly recommended) preheated at a temperature between $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ for PLA. Before printing and when the nozzle is already heated, we recommend extruding some filament to clean the nozzle.

P3. PRINT

In the link before you have two Cura projects with the recommended setup for printing UVA. We recommend printing the pieces separately or in a combo (the headpieces together and the battery pieces in another attempt). We worked with a Creality Ender 3, but the setup will change depending on the 3d printer that you are using, so we also recommend to make several tests to understand your machine before trying to print a finished object.

P4. REMOVE THE PRINTS FROM THE PRINTER BED

Be careful with the printing bed and the prints, it is much better to have a flexible bed (even so this kind of beds are more difficult to level). You can use the spatula to help you separate the pieces from the plate.

P5. REMOVE THE SUPPORTS

BE PATIENT, and careful because the snip that you should use to help you remove the supports is sharp. we also recommend using gloves for this part of the process.

1.2. SMD REFLOW SOLDERING

You will need for this task the follow materials and tools:

Follow the list of components and the PCBs diagrams in the next pages.

For further information about the SDM Reflow Soldering you can follow the tutorial in the next link

1.2.1. WITH A REFLOW OVEN

P1. SET YOUR WORKSTATION
Prepare your tools, workspace, and PCB’s for the process.

P2. APPLY THE SOLDER PASTE

Be careful to administer it precisely over the PCB solder pat.

P3. PLACE THE COMPONENTS

With the help of tweezers, place all the componentes on the solder pats following the circuit diagrams.

P4. COOKING TIME

Cook the PCB's following the instructions of the solder paste. (times and temperatures)

1.2.2. PCB'S DYAGRAMS

UVA-E-CPU-1(front)

UVA-E-LED-1 (front)

[^0]
1.2.3. LIST OF COMPONENTS

https://saidalvarado.github.io/UVA_interactive_BOM/Arduino_CPU_Board_BOM.htm

UVA-E-LED-1
https://saidalvarado.github.io/UVA_interactive_BOM/Inolux_led_bulb_BOM.html

UVA-E-DRV-1
https://saidalvarado.github.io/UVA_interactive_BOM/AL8853_Led_driver_BOM.html

2. ASSEMBLY

2.1. CIRCUIT INTERCONECTION

For this task you will need the follow materials and tools:

UVA-E-CPU-1 (front)

SWITCH TL2230

HEATSINK

2X M3-15mm BOLTS WITH NUT

P1. PLACE THE HEATSINK ON THE UVA-E-LED-1

With the doble tape that brings ATS Heatsink, Attache it to the back of the UVA-E-LED-1 PCB. It have to be centered horizontally (7.5 mm fom de sides) and and slightly high verticatly (14 mm from the bottom). Follow the diagram.

P2. INSERT UVA-E-LED-1 INTO UVA-MH-3

P3. INSERT SWITCH TL2230 INTO UVA-MH-3

P4. INTERCONECT THE PCBs (UVA-E-DRV, UVA-E-CPU, Screen)

Folow the diagram below to interconect all the electronics. First wire UVA-E-DRV with UVA-E-CPU, then proceed with the OLED Screen and the Switch.

P5. INSERT PCBs INTO UVA-MH-3

Before incerting the PCBs interconected into UVA-MH-3, be sure that you already conected the switch to the UVA-E-CPU.

P6. CONECT UVA-E-LED + (UVA-E-DRV AND UVA-E-CPU)
Folow the previos diagram in P4
P7. UPLOAD THE SOFTWARE
After interconecting all the PCBs, conect to a power source and upload the software to the UVA-E-CPU.

Here you can find the software for UVA-1

P8. INCERT M3 BOLTS INTO UVA-MH-1

Before incerting the bolts with the nuts, attach one cable to each bolt and incert the cables before the bolts. Then follow the steps.

P8. 4

P9. INCERT UVA-MH-4 INTO UVA-MH-1

P10. INSERT UVA-MH-3 INTO UVA-MH-1

Before incerting UVA-MH-3 into UVA-MH-1 you have to conect the bolt wires to the PCBs following the diagram in P4. You should try to guide the bolt wires through the center channel in the UVA-MH-4

P11. PLACE AND CLICK UVA-MH-2

place on the marks and rotate the UVA-MH-2 until you feel and hear the cick.

2.2. BATTERY PACK

P1. PLACE AND SOLDER THE FIRST CONTACT

Place the first contact in UVA-HB-3 as shown below and solder the wire afterpasing it through the hole. Then cover de conection with some insulating material as silicon.

P3. PLACE THE BENDED CONTACTS

Take two contacts, place them in UVA-HB-3 in the empty spaces on the same side of the first placed contact. Solder the bent legs together and then insulate with silicon.

P4. INSULATE AND REPEAT

Solder the bent legs together and then insulate with silicon. Then repeat the phases P1, P2 and P3 on the free side of the UVA-HB-3.

P5. INCERT THE ROTATIONAL CONTACTS AND SOLDER

Compress a little bit of the contacts before inserting them. the place them as shown in the image below. After placing them, solder them to their respective wires.

P7. JOIN UVA-HB-2 AND UVA-HB-3

Following the image below and taking into account the triangular form on the bottom of UVA-HB-3 slice the piece and apply force parallel to the insertion until you hear the click.

P8. INSERT THE BATTERY CELLS

ATTENTION. Follow the + - signals to insert the batteries.

P9. PREPARE TO INCERT

Before inserting UVA-HB-3 into UVA-HB-1, take into account the position and considering that the pieces should rotate to be locked.

P10. INSERT UVA-MB-3 INTO UVA-MB-1

Insert and then rotate until you listen to the click.

2.3. FINAL ASSEMBLY UVA

You will need for this task the follow materials and tools:

UVA-MB

UVA-MH

P1. ALING

ATTENTION. Pay attention to the legs (UVA-MH) and locks (UVA-MB) because there is only a way to introduce it. Align with the pieces before proceeding.

P2. INCERT AND ROTATE

Following the previous alienation, introduce the legs of UVA-MH into UVA-MB and rotate until you listen to the click. After the click UVA-1 is ready to use.

3. LICENCES

3.1. CREATIVE COMMON

» 3d printer filament by Oleksandr Panasovskyi from the Noun
» soldering iron by Chris Pyper from the Noun Proje
» Wire by Nikita Kozin from the Noun Project
» sheet by Linseed Studio from the Noun Project
» Spatula by ATOM from the Noun Project
» Pliers by Kristina Margaryan from the Noun Project
" 3D Printer by Franc from the Noun Project
» transistor by Adnen Kadri from the Noun Project
» Tweezers by Hoeda from the Noun Project
» glue by arie from the Noun Project
» Oven by Icongeek26 from the Noun Project
» Wire by priyanka from the Noun Project
" sheet by Linseed Studio from the Noun Project

All the hardware components of this project are licensed under a Creative Commons license

Creative Commons License
UVA by Said Alvarado, Miguel Fernandez is licensed under a Creative Commons Attribution 4.0 International License

All the firmware of he project is licensed under the MIT license.

Copyright © 2020 Said Alvarado and Miguel Fernandez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, dis tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Ultraviolet wand for adhesives curing
 Multi-Tool kit
 UVA - V1
 FABRICATION AND ASSEMBLY

[^0]: JVA-E-DRV-1 (front)

